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Abstract
We consider probabilistic embedding of metric spaces into ultra-metrics (or equivalently to a constant
factor, into hierarchically separated trees) to minimize the expected distortion of any pairwise
distance. Such embeddings have been widely used in network design and online algorithms. Our
main result is a polynomial time algorithm that approximates the optimal distortion on any instance
to within a constant factor. We achieve this via a novel LP formulation that reduces this problem
to a probabilistic version of uniform metric labeling.
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1 Introduction

Embedding a finite metric space into simpler spaces such as trees, ultrametrics, and Euclidean
spaces (called “target metrics”) has a wide range of applications, and has been widely studied.
In such an embedding, the distance between any pair of points should be at least as large
as in the original space, while being at most a factor of α larger, where α is termed the
distortion of the embedding. The goal is to design an embedding into a given target metric
whose distortion is as small as possible. We will denote by n the number of points in the
metric space.

A lot of attention has focused on probabilistic embeddings, which construct a distribution
over metrics from the target space, for instance, a distribution over trees or ultrametrics.
The goal is now to bound the expected distortion for any pair of points relative to their
distance in the original metric space. Probabilistic embeddings typically allow for much
lower values of distortion. Indeed, when the target metric is a tree or an ultrametric,
deterministic embeddings have distortion Ω(n) [2], while probabilistic embeddings have
distortion α = O(log n) [20].

In this paper, we consider the problem of embedding metrics into a distribution over
ultrametrics, defined in Section 2. To within a constant factor on distortion, these metrics
embed into hierarchically separated trees (HSTs), and such embeddings have found myriad
uses in network design, data analysis and online algorithms. This is because most network
design problems such as Steiner tree or facility location are NP-Hard in general metric spaces,
but amenable to polynomial time algorithms on trees. If the objective function is a linear
combination of distances, the solution on the distribution over HSTs yields a α approximation
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2:2 Probabilistic Metric Embedding via Metric Labeling

algorithm for the input metric space, where α is the distortion of the embedding. Indeed,
recent breakthroughs in developing competitive algorithms for the celebrated randomized
k-server problem proceed via probabilistic embedding into HSTs [16, 4]. Other applications
include analysis of hierarchical clusterings [10, 31, 17], and approximation algorithms for
group Steiner trees [21], buy-at-bulk network design [3], and metric labeling [27].

In this context, it is known that in the worst case over input metric spaces, the distortion
of embedding into a distribution over ultrametrics is α = O(log n) [20], and this bound is
tight [25, 5]. However, these algorithms typically use fixed ball-growing procedures oblivious
to the actual metric. It is conceivable that any given metric can be embedded with much
lower distortion than such procedures imply. For instance, an entirely different algorithm can
embed doubling metrics into ultrametrics with distortion O(log ∆), where ∆ is the spread1

of the point set; this can be significantly better if ∆ = o(n) or independent of n [26]. Further,
many real-world social graphs have small diameter, often independent of the network size
n [32, 30] and again, it is conceivable that specifically tailored algorithms can embed these
better than what the worst case bounds imply.

In this paper, we therefore ask: Can we achieve the best possible (in terms of distortion)
probabilistic embedding of a given discrete metric space into ultrametrics in polynomial time?

1.1 Result
Our main result is positive:

▶ Theorem 1. Given any n-point metric space that can be embedded into a distribution
over ultrametrics with optimal distortion α, there is an algorithm with expected polynomial
running time2 that can find an embedding of distortion 16 · α.

Prior to our work, the best published approximation factor was O(log n) [20], which is
also the tight existence result. In contrast, we provide a nearly tight computational result,
which also yields improved instance-dependent approximation factors for problems like metric
labeling and buy-at-bulk network design, where the factor of O(log n) in the approximation
ratio improves to O(α).

1.2 Technique
Our algorithm for proving Theorem 1 proceeds via constructing an LP relaxation. In this
LP relaxation, the variables γr

jj′ represent the probability that j, j′ are separated in the HST
at radius (or level) r. This LP is our main non-trivial contribution. Note that though there
are LP formulations that embed metrics into trees [11, 27], we do not know how to solve
them to a o(log n) approximation factor.

We then use the randomized rounding technique for uniform metric labeling in [27] in
decreasing order of radius to construct a distribution over centers and assignments, while
relaxing γr

jj′ by a factor of 2. In the uniform metric labeling problem, the goal is to assign
one of k labels to the vertices of a graph with edge weights so that the total weight of the
edges whose end-points have different labels is minimized. In the algorithm of [27], they
encode the probability that two endpoints of an edge are separated as a random variable

1 Spread is the ratio of the largest to smallest distance in the metric space.
2 For any δ > 0, the algorithm can easily be converted to a 16 + δ approximation in deterministic

polynomial time, with the polynomial depending on n and log ∆
δ , where ∆ is the ratio of largest to

smallest distance in the metric space.
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in their LP, and then minimize an expected cost over these random variables. Our main
idea is that the event whether two nodes belong to the same subtree in the HST can be
similarly treated as a random variable in our LP. The expected “cost” of the labeling is
the contribution of these variables to the distortion, and these variables can be randomly
rounded via the same ideas as for metric labeling.

Note that the algorithm for general metric labeling [27] – where the labels lie in a metric
space and the weight of the edge is multiplied by the distance between the corresponding
labels – proceeds via embedding the metric over labels into an ultrametric. We effectively
reduce in the reverse direction and show that metric embedding reduces to (uniform) metric
labeling!

1.3 Related Work
The main technique for probabilistically embedding metrics into ultrametrics is low-diameter
decompositions. These involve decomposing the input metric space into small diameter
components via sampling radii from a suitable distribution and randomly partitioning based
on these radii. Starting with a result of [5], a sequence of results showed improving bounds
for such embeddings [6, 11, 20], culminating in the optimal distortion bound of O(log n).
Better results are known for special types of metrics [26]. All these decompositions proceed
by deriving absolute bounds on the probability that a pair of nodes end up in different
partitions; in contrast, we encode this probability as variables in an LP formulation.

Trees are more general spaces than ultrametrics, and the seminal work of [2] initiated the
study of embedding metrics into trees. Though the worst case bound for embedding into
a distribution over trees remains Θ(log n), better results are known for embedding specific
classes of metrics such as the shortest path metrics of k-outerplanar or small pathwidth
graphs [13, 23, 29]. The work of [11] provides an LP formulation for computing the optimal
distortion for embedding into a distribution over trees; however, their separation oracle –
the minimum communication cost spanning tree problem – is unlikely to admit a o(log n)
approximation. Our LP for ultrametrics, in contrast, is inspired by stochastic optimization
and metric labeling and shows a constant approximation.

The above works provide worst case guarantees on the distortion of the embedding,
while we provide an approximation result. Though other prior work has considered such
approximation guarantees [19, 24, 1, 15], these works focus on deterministic embeddings,
while ours consider approximations for probabilistic embeddings. The work of [1] provides a
polynomial time algorithm for optimally embedding a metric into a single ultrametric, and
the work of [15] shows an improved running time for obtaining such an embedding. However,
the optimal distortion for embedding into a single ultrametric might be Ω(n), while it is
O(log n) for embedding into a distribution. This result motivates the need for algorithms
that approximate the optimal probabilistic embedding. We note that the algorithm of [1]
does not extend to probabilistic embeddings.

Our LP is also similar in spirit to those in [28]. They give a 2-approximation to separating
decompositions (see [28] for formal definitions) by writing an LP using variables similar to
our variables γ for the separation probabilities. The key observation we make is that unlike
in their setting where there is a fixed separation probability, we need to optimize over the
separation probabilities at all levels of the HST simultaneously.

Stochastic Optimization. Our algorithms involve rounding a linear programming relaxation
to the optimal solution. This LP is inspired by similar LPs approximate stochastic optim-
ization, particularly those for stochastic knapsack [18], multi-armed bandits [22], Bayesian

APPROX/RANDOM 2023



2:4 Probabilistic Metric Embedding via Metric Labeling

auctions [9, 12, 8], and stochastic matching [14]. The novel aspects of our work is the
formulation of probabilistic embeddings as a stochastic optimization problem, and viewing
the uniform metric labeling algorithm as a stochastic rounding procedure [27].

2 Terminology

▶ Definition 2 (Metric space). A metric space (N, d) is a finite set of n points N endowed
with a distance function d : N ×N → R+ ∪ {0}. This distance function has the following
properties:

d(x, x) = 0 for all x ∈ N ;
d(x, y) = d(y, x) for all x, y ∈ N ; and
d(x, z) ≤ d(y, z) + d(x, y) for all x, y, z ∈ N .

▶ Definition 3 (Embedding). Given two metric spaces (N, d) and (T, dT ), an embedding from
N to T is a function f : N → T .

With an abuse of notation, for x, y ∈ N , we use dT (x, y) to refer to dT (f(x), f(y)).
Our goal is to embed a given n point metric space into a probability distribution over

ultrametrics. An ultrametric and probabilistic embedding are defined below.

▶ Definition 4 (Ultrametric). A metric space (N, d) is an ultrametric if for all points
x, y, z ∈ N , we have d(x, z) ≤ max (d(x, y), d(y, z)) .

▶ Definition 5 (Probabilistic embedding). Given a metric space (N, d), an embedding is a
distribution over ultrametrics (N, dT ), where ultrametric T is chosen with probability pT . Let
F denote this distribution and S denote its support. The embedding should be non-contractive,
meaning that

∀x, y ∈ N, ∀T ∈ S, dT (x, y) ≥ d(x, y).

Further, this embedding has distortion α (where α ≥ 1) if

∀x, y ∈ N, ET ∼F [dT (x, y)] ≤ α · d(x, y).

Hierarchically Separated Trees. It is convenient to consider a specific type of ultrametric
termed hierarchically separated trees. These are defined as follows.

▶ Definition 6 (exact c-HST). A metric (N, d) is an exact c-HST (for c > 1) if the elements
of N are the leaves of a rooted tree T , all of whose leaves are at the same level. Each internal
node v of T is associated with a number δv. These numbers increase by a factor of exactly c

as we move up the tree, so that δv = c · δu whenever u is a child of v. Given leaves x, y ∈ N ,
let z be their least common ancestor in T . Then d(x, y) = δz.

The diameter of a c-HST with root r is δr. Note that a c-HST with diameter D decomposes
into c-HSTs with diameter D/c, where points in different parts are separated by distance
exactly D.

The following result shows that it suffices to consider embedding into exact c-HSTs.

▶ Lemma 7 ([7]). Given a metric space and its embedding into a distribution over ultrametrics
with distortion α, there is an embedding into a distribution over exact c-HSTs with distortion
α · c.
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3 Linear Programming Relaxation

The LP relaxation is not obvious, and we will present it in some detail. We are given a
metric space (N, d) whose smallest distance is 1 and largest distance is ∆. We will use exact
c-HSTs for c = 2; using any other value of c only yields a worse approximation factor, and
our presentation is simplified without the parameter c. By losing a factor of 2, we assume
that the optimal solution embeds this metric into a distribution over exact 2-HSTs. Let this
embedding have distortion q ≤ 2α if the optimal distortion for probabilistically embedding
into ultrametrics is α. Our goal therefore is to approximate q in polynomial time.

Given this optimal probabilistic embedding into 2-HSTs, let M denote the set of possible
δz values in powers of 2. Note that |M | = O(log ∆), since 1 ≤ δr ≤ 2∆ without loss of
generality.3

Consider some 2-HST in the optimal embedding of (N, d) and some r ∈ M . For any
sub-tree T ′ whose root z has δz = r, all nodes in T ′ have distance in the 2-HST at most
r from some node i ∈ T ′. Since this embedding is non-contractive, we have d(i, j) ≤ r for
all j ∈ T ′. We arbitrarily pick one i in this subtree as the “representative” of this subtree
and “assign” all other nodes in the subtree to i. Therefore, each node j is assigned to one
representative i at each level r ∈ M in the tree and this satisfies d(i, j) ≤ r. Now we can
define a graph Gr(N, Er) for each r ∈ M , where there is an edge (i, j) ∈ Er if and only if
d(i, j) ≤ r. Let Bi(r) = {j ∈ N, d(i, j) ≤ r}.

For (i, j) ∈ Er, define a variable xr
ij as the probability that j’s representative at level r

is i. Similarly, let zr
ijj′ be the probability that both j, j′ have i as their level r representative,

where we assume (i, j) ∈ Er and (i, j′) ∈ Er. Finally, let γr
jj′ be the probability that j and

j′ do not share a level r representative.
The LP relaxation with variables xr

ij , zr
ijj′ , and γr

jj′ , and is shown in Figure 1.

(LP1)

Minimize q (1)

∀j, j′,
∑
r∈M

r · γr
jj′ ≤ q · d(j, j′) (2)

∀i, r, j, j′ ∈ Bi(r) min(xr
ij , xr

ij′) ≥ zr
ijj′ (3)

∀j, j′, r
∑

i:j,j′∈Bi(r)

zr
ijj′ ≥ 1− γr

jj′ (4)

∀j, r
∑

i:j∈Bi(r)

xr
ij = 1 (5)

∀j, j′, r < d(j, j′) γr
jj′ = 1 (6)

∀i, j, j′, r γr
jj′ , xr

ij , zr
ijj′ ≥ 0. (7)

Figure 1 Linear program relaxation for embedding into 2-HSTs.

3 To see this, consider any HST in the support of the optimal probabilistic embedding. We can contract
all the internal nodes v of the HST with δv ≥ 2∆ into one node r with δr = 2∆. Clearly, this preserves
the non-contractivity property, since no pair of vertices are more than ∆ far apart. Furthermore, this
can only decrease the expected distortion of any edge.

APPROX/RANDOM 2023



2:6 Probabilistic Metric Embedding via Metric Labeling

▶ Lemma 8. LP1 is feasible and is a 2-approximation to the distortion of the optimal
probabilistic embedding into ultrametrics.

Proof. Consider an optimal embedding of the input metric into 2-HSTs with distortion q.
As mentioned before, since q is a factor 2 approximation to optimal distortion of embedding
into ultrametrics, this means the objective is a 2-approximation. We only need to show that
there is a feasible solution to the LP with objective at most q.

Now, consider any 2-HST in the support of the optimal embedding. We interpret the
variables as described before. To interpret Equation (2), note that if (j, j′) have least common
level r, they are separated at levels r/2, r/4, r/8, and so on. Therefore, the contribution this
2-HST makes to the LHS of Equation (2) is r/2 + r/4 + · · · ≤ r. Taking expectation over all
2-HSTs in the optimal embedding, we have E[r] ≤ q · d(i, j), where q is the distortion of this
embedding. This shows that the constraint holds.

Equation (6) captures that the embedding is non-contractive: If d(j, j′) < r, then they are
separated at level r. The remaining constraints are interpreted as follows. Equation (3) says
j, j′ are co-assigned to i implies they were both individually assigned to i; Equation (5) says
each j ∈ N has a representative at each level r; and Equation (4) says that the probabilities
that j, j′ are co-assigned and not co-assigned at level r sum to at least 1.

One feasible solution to the LP is to assign each node j to itself at all levels, so that
xr

jj = 1 for all j ∈ N, r ∈M . Then zr
ijj′ = 0 and γr

jj′ = 1 for all j ̸= j′. This is feasible when
q = 2∆. ◀

4 Rounding and HST Construction

We first present a procedure in Algorithm 1 that generates partitions separately for each
level r. Essentially, our algorithm solves |M | instances of metric labeling, one for each level
r. This step adapts the rounding scheme in [27] for uniform metric labeling. Each “label” is
a possible representative at level r. The expected cost of this metric labeling is then used to
bound the expected distortion of the embedding.

To construct the HST itself, we inductively compute the tree in the following manner:
At level 2∆, every node is assigned the same representative. For every lower level r, the set
of nodes assigned to the same representative at level r

2 belong to the same subtree. These
nodes are then assigned new representatives at level r based on the metric labeling.

Algorithm 1 Rounding to Create Partitions.

1: for r ∈M in decreasing order do
2: S ← N ; P r

i = ∅ for all i ∈ N

3: while S ̸= ∅ do
4: Choose a center i ∈ N uniformly at random independent of past choices.
5: Choose ℓr

i ∈ [0, 1] uniformly at random independent of past choices.
6: For each j ∈ S ∩Bi(r), if xr

ij ≥ ℓr
i , assign j to P r

i and remove j from S.
7: end while
8: end for

We next combine these partitions into a 2-HST in Algorithm 2.

Analysis
We first consider Algorithm 1. The lemma below follows directly from the analysis of the
rounding algorithm for uniform metric labeling in [27]. For completeness, we provide the
proof here.
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Algorithm 2 Combining Partitions and Constructing the 2-HST.

1: Place a root node w at the highest level with δw = 2∆ and set Sw = N .
2: for r ∈M in decreasing order do
3: for each node w at the previous (parent) level with set Sw do
4: for each i with P r

i ∩ Sw ̸= ∅ do
5: Place a child node v with set Sv = P r

i ∩ Sw and δv = 2r

6: end for
7: end for
8: end for

▶ Lemma 9 (Lemma 3.2 in [27]). Consider some pair j, j′ with d(j, j′) = R. Consider some
level r ≥ R. For any (j, j′) ∈ E(G),

Pr[j, j′ separated at level r] ≤ 2γr
jj′ .

Proof. We assume |C| = n ≥ 2; the result is trivial for n = 1. Since we fix a phase r, we will
omit the superscript r from the proof below.

Suppose that both j, j′ ∈ S at some point in time. Then j is assigned to i with probability
xij

n , where 1
n is the probability that i is chosen; conditioned on this, j is assigned to i if ℓi ≤ xij .

Therefore, j is assigned to some center at this step with probability is
∑

i:j∈Bi

xij

n = 1
n .

Similarly, conditioned on both j, j′ ∈ S, the probability with which they are assigned
to center i ∈ C is min(xij ,xij′ )

n ≥ zijj′

n , so this pair is co-assigned with probability at least∑
i

zijj′

n ≥ 1−γjj′

n . This is therefore a lower bound on the probability with which both j and
j′ get assigned this step.

By the inclusion-exclusion principle on the pair (j, j′), conditioned on both j, j′ ∈ S, the
probability with which either j or j′ gets assigned is:

Pr[Either j or j′ assigned |j, j′ ∈ S] ≤ 1
n

+ 1
n
− 1− γjj′

n
= 1 + γjj′

n
. (8)

Since n ≥ 2 and γjj′ ≤ 1, the RHS above is at most 1. Therefore, the probability that both

j, j′ ∈ S at time t is at least
(

1− 1+γjj′

n

)t−1
. Conditioned on this event, they are co-assigned

at time step t with probability at least 1−γjj′

n . Therefore, we have

Pr[j, j′ not separated ] ≥
∞∑

t=1

(
1− 1 + γjj′

n

)t−1
· 1− γjj′

n
= 1− γjj′

1 + γjj′
.

Noting that Pr[j, j′ separated] ≤ 1− 1−γjj′

1+γjj′
≤ 2γjj′ , this completes the proof. ◀

The following two lemmas will now complete the proof of Theorem 1.

▶ Lemma 10. The construction in Algorithm 1 and Algorithm 2 is non-contractive.

Proof. Suppose d(j, j′) = R. Consider some level r ∈ M ∩ [R/4, R/2]. For this value of r,
there is no center i such that j, j′ ∈ Bi(r). Therefore, j, j′ lie in different partitions at this
level. Observing that Algorithm 2 sets δv = 2r for nodes v at level r, their common ancestor
u must have δu ≥ 4r ≥ R. Therefore, the embedding is non-contractive. ◀

▶ Lemma 11. In the output of Algorithm 2, the expected distortion of any distance is at
most 8q. This implies a 16 approximation to the optimal embedding into a distribution over
ultrametrics.

APPROX/RANDOM 2023
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Proof. Consider some pair j, j′ with d(j, j′) = R. Consider some level r ≥ R. By Lemma 9,

Pr[j, j′ separated at level r] ≤ 2γr
jj′ .

If r < R, note that γr
jj′ = 1, so the above inequality trivially holds.

If r∗ is the highest level at which j, j′ are separated, the distance in the embedding is
4r∗. As an upper bound, we simply add a distance of 4r for all levels r at which j, j′ are cut.
This yields:

E[ Distance in embedding between (j, j′)] ≤
∑
r∈M

4r · 2γr
jj′ ≤ 8q · d(j, j′).

Since q itself is a 2 approximation to the optimal distortion of embedding into ultrametrics,
this implies a 16 approximation to the distortion of embedding into a distribution over
ultrametrics. ◀

Running Time. Since each j gets assigned with probability 1/n each step, the expected
number of steps is O(n log n) per level, and there are O(log ∆) levels. Suppose we stop the
process after c · n ln ∆

δ steps. Then for large constant c, the probability that at some level,
all j have not been assigned is at most δ

∆ . In this event, we pretend the ultrametric distorts
all distances to ∆. The expected distortion now becomes a 16 + δ approximation. This
completes the proof of Theorem 1.

5 Conclusion

We have in effect reduced probabilistic metric embeddings to metric labeling, performing
the reverse of the reduction in [27] that reduces metric labeling to metric embedding. There
are some open questions that arise from this work. First, is there an exact polynomial time
algorithm for embedding into ultrametrics or even a PTAS? Second, can similar results be
obtained for the more general problem of embedding into tree metrics?
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